FE-Characterisation vs. Experimental Analysis of a Brushless DC Automotive Actuator

Dr. Dorin ILES
R&D Lab for Electric Drives
ebm-papst St. Georgen GmbH, Germany
Objectives:

1. FE-analysis using JMAG was carried out determining all relevant characteristics for a (6+6) slot/8 pole, 3 phase interior permanent magnet (IPM) brushless D.C. motor considered as a proper candidate for an automotive actuator application

2. Experimental analysis is described and the measurement results are presented and whenever possible compared with computational results, in order to validate the FEM-computations for this type of machine
Outline of presentation:

- **Section I.** Introduction.

- **Section II.** IPM BLDC.
 - A. Defining the case study.
 - B. Materials, construction and manufacturing technologies.

- **Section III.** FEM characterization of BLDC using JMAG.
 - A. Cogging torque calculation.
 - B. No-load flux linkage and back-emf.
 - C. Load torque.
 - D. Computation of inductances.

- **Section IV.** Experimental analysis of IPM-BLDC.
 - A. Phase resistance measurement.
 - B. Phase self and line-to-line inductance measurement.
 - C. Standstill torque measurement.
 - D. Phase back-emf measurement.
 - E. Cogging torque measurement.
 - F. Friction and iron loss torque versus speed.

- **Section V.** Conclusion.
I. Introduction

Automotive electric drives – an overview
I. Introduction

Automotive electric drives – torque-speed demands

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPAS</td>
<td>Electric power assisted steering</td>
</tr>
<tr>
<td>EAFS</td>
<td>Electric assisted front steering</td>
</tr>
<tr>
<td>EMAS</td>
<td>Electromechanical brake (wedge)</td>
</tr>
<tr>
<td>SBW</td>
<td>Shift-by-Wire</td>
</tr>
<tr>
<td>HVAC</td>
<td>Air compressor for air conditioner</td>
</tr>
<tr>
<td>FC-AC</td>
<td>Air compressor for fuel cells</td>
</tr>
<tr>
<td>EG</td>
<td>Electric gearbox</td>
</tr>
<tr>
<td>EHAS</td>
<td>Electro-hydraulic active suspension</td>
</tr>
<tr>
<td>EMNS</td>
<td>Electromechanical active suspension</td>
</tr>
<tr>
<td>EAT</td>
<td>Electrical assisted turbocharger</td>
</tr>
<tr>
<td>VVT</td>
<td>Variable valve timing</td>
</tr>
<tr>
<td>SG</td>
<td>Starter-generators</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle traction</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid electric vehicle traction</td>
</tr>
</tbody>
</table>
I. Introduction

Steering systems – a classification

Manual steering
- mechanical
 - MS

Power-assisted steering
- electrical
 - EPAS-column
 - EPAS-pinion
 - EPAS-dual-pinion
- hydraulic
 - HPAS
 - EHPAS
 - EAS-HPAS
 - EPAS-rack

Full power steering (steer-by-wire)
- hydraulic
 - HPS
- electrical
 - EPS

Steering parameters
- steering torque (torque assistance)
- steering angle (angle assistance)
I. Introduction

Competing motor/drives technologies for automotive applications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DC</th>
<th>IM</th>
<th>PMSM</th>
<th>PMSM</th>
<th>SR</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque density</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Torque/Amp</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peak to continuous torque</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>capability</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variable speed control</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Torque/Inertia ratio</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Speed range</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Torque pulsations</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cogging torque</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Temperature sensitivity (PM</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>demagnetization)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fault tolerance Failure modes</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Acoustic noise</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Power converter requirements</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Machine construction</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Manufacturing technology</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Reliability</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Design and manufacturing</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer acceptance</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motor cost</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drive system cost</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

PSIM-JMAG Users Conference, Aix-en-Provence, FRANCE, September 3rd and 4th, 2009

7 of 27
I. Introduction

PMSM-classification based on the shape of back-EMF and excitation currents
II.A. Defining the case study.

Schematics of an active front steering system:

Motor specification data:

- \(T_{en} = 1.14 [Nm] \)
- \(n_n = 1000 [rpm] \)
- \(V_{DC} = 12 [V] \)
- \(T_{cogg} \leq 1\% \cdot T_{en} \)
- \(2p = 8 \)
- rectangular current control
II.A. Defining the case study.

Design solution:

- $D_{so} = 70\text{[mm]}$
- $D_{si} = 42\text{[mm]}$
- $g = 0.25\text{[mm]}$
- $l_{stack} = 20\text{[mm]}$
- $h_{PM} = 3\text{[mm]}$
- $w_{PM} = 13.75\text{[mm]}$
II.B. Materials, construction and manufacturing technologies

Winding layout of (6+6) slots/8 poles machine

Stator and rotor before assembling
III. FEM characterization of BLDC using JMAG

Finite elements mesh

Nodes 18367
Elements 26575
III. FEM characterization of BLDC.

Magnetic loading and flux lines distribution for the BLDC
III.A. Cogging torque calculation.

For this topology, the minimization of cogging torque was done directly without skewing the slots:

\[
T_{\text{max cogging}} = 7.46 \,[\text{mNm}] < 0.7\%.
\]
III.B. No load flux linkage and back-emf.

The back-EMF was calculated with:

\[E = \frac{d\Psi}{dt} = \frac{d\Psi}{d\theta_e} \cdot \frac{d\theta_e}{dt} = \frac{d\Phi}{d\theta_e} \cdot n_c \cdot \frac{d\theta_{er}}{dt} = k_E \cdot \omega_r \]

FEM-calculated no-load phase flux linkage

FEM-calculated phase back-EMF constant \(k_E \) versus rotor angular position
III.C. Load torque

Total torque vs. rotor angular position for four different phase current amplitudes

The rectangular waveforms of the phase currents
III.D. Computation of inductances

The inductance is calculated as a ratio of the flux linkage and the current:

\[L = \frac{\Psi}{I} \]

a) Self and mutual FEM-calculated inductances for:
 a) 28.3 [mA], b) \(L_{UU} \) and \(L_{UV} \) for \(I_U = (0 \text{ to } I_M = 34 \text{ A}) \)

b)
IV. Experimental analysis of IPMBLDC.

The measurement procedure consists of several tests. These tests were chosen in order to allow the estimation of machine parameters in a wide area of variation.

A first classification would subdivide them in standstill or locked-rotor, and running tests [9].

Whenever possible, the experimental characteristics are compared with FEM-calculated characteristics, in order to validate the FEM accuracy in determining the BLDC parameters.
This prototype presents a small asymmetry, 2.73%, of the phase resistances. The line-to-line resistances have an asymmetry of 1.21%. For the industrial practice a phase resistance asymmetry of up to 3% is satisfactory [9].

For further parameter estimation the mean values of the phase and line-to-line resistances will be used.
IV.B. Phase self and line-to-line inductance measurement.

The measurement was done using a frequency of 50 Hz for the injected current. However, the inductances measured with this method are unsaturated values, as the injected current was very small (40 mApeak).

After measuring the phase self and line-to-line inductances, the mutual inductances for the Y-phase connection can be calculated with the formula:

\[
L_{UV}(\theta_e) = \frac{L_{UU}(\theta_e) + L_{VV}(\theta_e) - L_{LL_{UV}}(\theta_e)}{2}
\]

Phase self inductances measured with RLC-bridge (50 Hz, 40 mApeak) and mutual inductances in comparison with FEM-calculated ones.
IV.C. Standstill torque measurement.

Measured and FEM-calculated torque vs. rotor position for four different phase current amplitudes

Phase current at:
- a) 20 A amplitude, b) 40 A amplitude
 (Measured during standstill torque measurements).
IV.D. Phase back-emf measurement.

The measurements were done running the machine as generator with open phases.

Shape of the phase back-emf (back-emf vs. rotor angular position at 750 rpm).

Measured and FEM-calculated back-emf constant $k_{E_{ph}}$ vs. rotor angular position.
IV.E. Cogging torque measurement.

Measured cogging torque vs. rotor mechanical position angle

Measured cogging torque and FEM-calculated one vs. rotor mechanical position angle
IV.F. Friction and iron loss torque versus speed.

Measured iron and friction losses torque vs. speed

In order to separate the two torque components a measurement of the friction loss torque versus speed must be carried out. This would be possible only if the permanent magnets were removed from the rotor [9].
Conclusion

The IPM BLDC was considered as a proper candidate for an automotive actuator, due to the following advantages:

- concentrated coils, which provide lower copper losses [1], and lower manufacturing costs
- a very low cogging torque obtained directly without skewing the slots
- a simplified production of the rotor in comparison with surface PMSM, due to the simple shape and fixture of the permanent magnets.

A comparison between FEM-calculated and measured parameters of an interior permanent magnet BLDC motor was presented. This comparison was done in order to validate the FEM-calculated parameters of the motor.
REFERENCES

REFERENCES

http://www.youtube.com/watch?v=umsULUG2P-M